Titin Protéines (TTN)

TTN encodes a large abundant protein of striated muscle. De plus, nous expédions Titin Anticorps (62) et Titin Kits (28) et beaucoup plus de produits pour cette protéine.

afficher tous les protéines Gène GeneID UniProt
TTN 7273 Q8WZ42
Souris TTN TTN 22138  
Rat TTN TTN 84015  
Comment commander chez anticorps-enligne
  • +1 877 302 8632
  • +1 888 205 9894 (toll-free)
  • Commandez enligne
  • orders@anticorps-enligne.fr

Top Titin Protéines sur anticorps-enligne.fr

Showing 3 out of 6 products:

Catalogue No. Origin Source Conjugué Images Quantité Fournisseur Livraison Prix Détails
Escherichia coli (E. coli) Humain His tag 100 μg Connectez-vous pour afficher 15 to 18 Days
$752.00
Détails
Escherichia coli (E. coli) Humain His tag   100 μg Connectez-vous pour afficher 11 Days
$411.40
Détails
Wheat germ Humain GST tag 10 μg Connectez-vous pour afficher 11 to 12 Days
$414.29
Détails

TTN Protéines protéines par origine et source

Origin Exprimée danse Conjugué
Human ,
,

Plus protéines pour Titin (TTN) partenaires d'interaction

Human Titin (TTN) interaction partners

  1. We employed WES to detect the mutations of DCM patients and identified 2 novel mutations. Our study expands the spectrum of TTN mutations and offers accurate genetic testing information for DCM patients who are still clinically negative.

  2. urinary concentration of titin correlated significantly with serum creatine kinase concentration, the best-known biomarker of Duchenne muscular dystrophy (Montrer DMD Protéines); the N-terminal fragment of titin in urine has potential as a diagnostic and clinical biomarker for DMD (Montrer DMD Protéines)

  3. we considered titin fragments as promising candidates for reliable and non-invasive biomarkers of muscle injury.

  4. TTN plays a role in regulation of cardiac electrical conductance and coupling, and is a risk factor for cardiac arrhythmias and sudden cardiac death

  5. The T-allele at rs10497520 in the TTN gene is associated with shorter skeletal muscle fascicle length and conveys an advantage for marathon running performance in habitually trained men.

  6. An overview of the different neuromuscular disorders caused by mutations in the TTN gene, reviewing the molecular findings as well as the clinical data (review).

  7. This review considers data on structural and functional features of titin, on the role of this protein in determination of mechanical properties of sarcomeres, and on specific features of regulation of the stiffness and elasticity of its molecules, and possible amyloid aggregation of this protein

  8. Exome sequencing was conducted and a novel mutation c.107788T>C (p.W35930R) in the titin gene (TTN) was identified.

  9. Study found that there is a missense mutation in the TTN gene, c.100126A > G (p.Thr33376Ala), in a family whose members suffer from familial dilated cardiomyopathy. TTN is closely related to dilated cardiomyopathy and is an important causative gene of familial dilated cardiomyopathy.

  10. Truncating titin mutations cause a mild and treatable form of dilated cardiomyopathy.

Mouse (Murine) Titin (TTN) interaction partners

  1. regulation of thick filament length depends on titin and is critical for maintaining muscle health.

  2. It is likely that titin plays a role in the increase of active muscle stiffness during rapid unloading. These results are consistent with the idea that, in addition to the thin filaments, titin is activated upon Ca(2 (Montrer CA2 Protéines)+) influx in skeletal muscle.

  3. Titin-based force enhancement in skeletal muscle is essentially absent in muscular dystrophy with myositis sarcomeres where amino acids in N2A and PEVK titin are deleted, indicating these specific regions along titin are paramount in increasing titin stiffness in an active sarcomere.

  4. Our data suggest that Tbeta4 is required for setting correct sarcomere length and for appropriate splicing of titin, not only in the heart but also in skeletal muscle.

  5. Phosphorylating Titin's Cardiac N2B Element by ERK2 (Montrer MAPK1 Protéines) or CaMKIIdelta Lowers the Single Molecule and Cardiac Muscle Force

  6. Cleavage of C-terminal titin by CAPN3 (Montrer CAPN3 Protéines) is associated with limb-girdle muscular dystrophy 2A and tibial muscular dystrophy.

  7. titin affects the tuning of shivering frequency

  8. An increase in the degree of titin phosphorylation results in increased proteolytic degradation of this protein, that contributes to the development of skeletal muscle atrophy.

  9. Pure volume overload induces an increase in titin stiffness that is beneficial and limits eccentric remodeling.

  10. increased titin stiffness promotes myocardial contraction by accelerating the formation of force-generating cross-bridges without decelerating relaxation

Cow (Bovine) Titin (TTN) interaction partners

  1. titin may be a factor involved in the Frank-Starling mechanism of the heart by promoting actomyosin interaction in response to stretch

  2. calcium affects passive myocardial tension in a titin isoform-dependent manner.

  3. Upon relaxation of shortened myocytes, the restoring stiffness correlates with the titin isoform expression profile with myocytes that express high levels of the stiff isoform (N2B) having the highest restoring stiffness.

Rabbit Titin (TTN) interaction partners

  1. Data show that disulfide isomerization reactions within Ig domains enable a third mechanism of titin elasticity.

  2. A dual-beam optical tweezers measured the mechanics of human alpha-actinin 2 (Montrer ACTN2 Protéines) and titin interaction at the single-molecule level. Depending on the direction of force application, the unbinding forces can more than triple. Multiple alpha-actinin (Montrer ACTN1 Protéines)/Z-repeat interactions cooperate to ensure long-term stable titin anchoring, while allowing the individual components to exchange dynamically.

  3. The results of this study are consistent with the claim that residual force enhancement is present and is regulated by titin in skeletal psoas myofibrils, but not cardiac papillary myofibrils

  4. landscape recovered all features of our nanomechanics results. The ensemble molten-globule dynamics delivers significant added contractility that may assist sarcomere mechanics, and it may reduce the dissipative energy loss associated with titin unfolding/refolding during muscle contraction/relaxation cycles.

  5. Work done by titin protein folding assists muscle contraction.

  6. Suggest that the increase in the static tension in activated striated muscle is directly associated with Ca(2+)-dependent change in titin properties and not associated with changes in titin-actin interactions.

  7. titin's visco-elastic properties appear to depend on the Ig do- main un/refolding kinetics and that indeed, titin (and thus myofibrils) can become virtually elastic when Ig domain un/refolding is prevented.

  8. Under non-equilibrium conditions across the physiological force range, titin extends by a complex pattern of history-dependent discrete conformational transitions.

  9. We tested the hypothesis that titin properties might be reflected well in single myofibrils. mechanics of titin are well preserved in isolated myofibrils.

  10. Titin might be responsible for passive force enhancement observed in myofibrils.

Pig (Porcine) Titin (TTN) interaction partners

  1. Two polymorphisms previously identified and described in the 3'UTR of MYPN (Montrer MYPN Protéines) and TTN genes in a group of Italian Large White (ILW) and Italian Duroc (ID) pigs, were analysed.

  2. Titin-actin interaction: PEVK-actin-based viscosity in a large animal.

  3. Neonatal pig hearts showed large N2BA-titin isoforms distinct from those present in the adult porcine myocardium.

  4. findings demonstrate that Tn plays an important role in the Frank-Starling mechanism of the heart via on-off switching of the thin filament state, in concert with titin-based regulation

  5. Report PKC phosphorylation of titin's PEVK element: a novel and conserved pathway for modulating myocardial stiffness.

  6. Coexpression of the 2 titin isoforms in large mammals allows longer sarcomere lengths without the development of excessive diastolic tension.

Profil protéine Titin (TTN)

Profil protéine

This gene encodes a large abundant protein of striated muscle. The product of this gene is divided into two regions, a N-terminal I-band and a C-terminal A-band. The I-band, which is the elastic part of the molecule, contains two regions of tandem immunoglobulin domains on either side of a PEVK region that is rich in proline, glutamate, valine and lysine. The A-band, which is thought to act as a protein-ruler, contains a mixture of immunoglobulin and fibronectin repeats, and possesses kinase activity. An N-terminal Z-disc region and a C-terminal M-line region bind to the Z-line and M-line of the sarcomere, respectively, so that a single titin molecule spans half the length of a sarcomere. Titin also contains binding sites for muscle associated proteins so it serves as an adhesion template for the assembly of contractile machinery in muscle cells. It has also been identified as a structural protein for chromosomes. Alternative splicing of this gene results in multiple transcript variants. Considerable variability exists in the I-band, the M-line and the Z-disc regions of titin. Variability in the I-band region contributes to the differences in elasticity of different titin isoforms and, therefore, to the differences in elasticity of different muscle types. Mutations in this gene are associated with familial hypertrophic cardiomyopathy 9, and autoantibodies to titin are produced in patients with the autoimmune disease scleroderma.

Gene names and symbols associated with Titin Protéines (TTN)

  • titin (TTN)
  • titin (Ttn)
  • titin (titin)
  • titin (TTNLOC100620261)
  • 1100001C23Rik Protéine
  • 2310036G12Rik Protéine
  • 2310057K23Rik Protéine
  • 2310074I15Rik Protéine
  • AF006999 Protéine
  • AV006427 Protéine
  • CMD1G Protéine
  • CMH9 Protéine
  • CMPD4 Protéine
  • D330041I19Rik Protéine
  • D830007G01Rik Protéine
  • EOMFC Protéine
  • HMERF Protéine
  • L56 Protéine
  • LGMD2J Protéine
  • mdm Protéine
  • MYLK5 Protéine
  • shru Protéine
  • TMD Protéine
  • UNC-22 Protéine

Protein level used designations for Titin Protéines (TTN)

connectin , rhabdomyosarcoma antigen MU-RMS-40.14 , titin protein homolog , titin

GENE ID SPECIES
7273 Homo sapiens
22138 Mus musculus
84015 Rattus norvegicus
424126 Gallus gallus
540561 Bos taurus
1791505 Rhodopirellula baltica SH 1
100008570 Oryctolagus cuniculus
100620261 Sus scrofa
100722767 Cavia porcellus
Fournisseurs de qualité sélectionnés pour Titin Protéines (TTN)
Avez-vous cherché autre chose?