+49 (0)241 95 163 153
+49 (0)241 95 163 155

Genome Polyprotein Protéines

(Genome Polyprotein (LOC100493440))
Capsid protein C: Plays a role in virus budding by binding to the cell membrane and gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. During virus entry, may induce genome penetration into the host cytoplasm after hemifusion induced by the surface proteins. Can migrate to the cell nucleus where it modulates host functions. {ECO:0000250|UniProtKB:P17763}. Capsid protein C: Inhibits RNA silencing by interfering with host Dicer. {ECO:0000269|PubMed:27849599}. Peptide pr: Prevents premature fusion activity of envelope proteins in trans-Golgi by binding to envelope protein E at pH6.0. After virion release in extracellular space, gets dissociated from E dimers. {ECO:0000250|UniProtKB:P17763}. Protein prM: Acts as a chaperone for envelope protein E during intracellular virion assembly by masking and inactivating envelope protein E fusion peptide. prM is the only viral peptide matured by host furin in the trans-Golgi network probably to avoid catastrophic activation of the viral fusion activity in acidic Golgi compartment prior to virion release. prM-E cleavage is inefficient, and many virions are only partially matured. These uncleaved prM would play a role in immune evasion. {ECO:0000250|UniProtKB:P17763}. Small envelope protein M: May play a role in virus budding. Exerts cytotoxic effects by activating a mitochondrial apoptotic pathway through M ectodomain. May display a viroporin activity. {ECO:0000250|UniProtKB:P17763}. Envelope protein E: Binds to host cell surface receptor and mediates fusion between viral and cellular membranes. Envelope protein is synthesized in the endoplasmic reticulum in the form of heterodimer with protein prM. They play a role in virion budding in the ER, and the newly formed immature particule is covered with 60 spikes composed of heterodimer between precursor prM and envelope protein E. The virion is transported to the Golgi apparatus where the low pH causes dissociation of PrM-E heterodimers and formation of E homodimers. prM-E cleavage is inefficient, and many virions are only partially matured. These uncleaved prM would play a role in immune evasion. {ECO:0000250|UniProtKB:P17763}. Non-structural protein 1: Involved in immune evasion, pathogenesis and viral replication. Once cleaved off the replication cycle, the plasma membrane and the extracellular compartment. Essential for viral replication. Required for formation of the replication complex and recruitment of other non- structural proteins to the ER-derived membrane structures. Excreted as a hexameric lipoparticle that plays a role against host immune response. Antagonizing the complement function. Binds to the host macrophages and dendritic cells. Inhibits signal transduction originating from Toll-like receptor 3 (TLR3). {ECO:0000250|UniProtKB:Q9Q6P4, ECO:0000269|PubMed:9371625}. Non-structural protein 2A: Component of the viral RNA replication complex that functions in virion assembly and antagonizes the host immune response. {ECO:0000250|UniProtKB:P17763}. Serine protease subunit NS2B: Required cofactor for the serine protease function of NS3. May have membrane-destabilizing activity and form viroporins (By similarity). {ECO:0000250|UniProtKB:P17763, ECO:0000255|PROSITE- ProRule:PRU00859}. Serine protease NS3: Displays three enzymatic protease, in association with NS2B, performs its autocleavage and NS2A-NS2B, NS2B-NS3, NS3-NS4A, NS4A-2K and NS4B-NS5. NS3 RNA helicase binds RNA and unwinds dsRNA in the 3' to 5' direction. Also plays a role in virus assembly (PubMed:18199634). {ECO:0000255|PROSITE-ProRule:PRU00860, ECO:0000269|PubMed:18199634}. Non-structural protein 4A: Regulates the ATPase activity of the NS3 helicase activity. NS4A allows NS3 helicase to conserve energy during unwinding. {ECO:0000250|UniProtKB:Q9Q6P4}. Peptide 2k: Functions as a signal peptide for NS4B and is required for the interferon antagonism activity of the latter. {ECO:0000250|UniProtKB:P17763}. Non-structural protein 4B: Induces the formation of ER- derived membrane vesicles where the viral replication takes place. Inhibits interferon (IFN)-induced host STAT1 phosphorylation and nuclear translocation, thereby preventing the establishment of cellular antiviral state by blocking the IFN-alpha/beta pathway (PubMed:15956546). {ECO:0000250|UniProtKB:Q9Q6P4, ECO:0000269|PubMed:15956546}. RNA-directed RNA polymerase NS5: Replicates the viral (+) and (-) RNA genome, and performs the capping of genomes in the cytoplasm (PubMed:19850911). NS5 methylates viral RNA cap at guanine N-7 and ribose 2'-O positions (PubMed:19850911). Besides its role in RNA genome replication, also prevents the establishment of cellular antiviral state by blocking the interferon-alpha/beta (IFN-alpha/beta) signaling pathway (PubMed:25211074). IFN-I induces binding of NS5 to host IFN- activated transcription factor STAT2, preventing its transcriptional activity. Host TRIM23 is the E3 ligase that interacts with and polyubiquitinates NS5 to promote its binding to STAT2 and trigger IFN-I signaling inhibition (PubMed:25211074). {ECO:0000269|PubMed:19850911, ECO:0000269|PubMed:25211074}.
Genome Polyprotein (LOC100493440) (AA 2-330) protein (His tag) (ABIN1660868)

LOC100493440 Origine: Coxsackie A Virus Hôte: Levure Recombinant > 90 % ELISA

Genome Polyprotein (LOC100493440) (AA 2-332) protein (His tag) (ABIN1667326)

LOC100493440 Origine: Coxsackie B Virus Hôte: Levure Recombinant > 90 % ELISA

Genome Polyprotein Protéines par Origin

Trouvez Genome Polyprotein Protéines pour une variété d'espèces telles que anti-Coxsackie A Virus Genome Polyprotein, anti-Coxsackie B Virus Genome Polyprotein. Les espèces listées ci-dessous sont parmi celles disponibles. Cliquez sur un lien pour accéder aux produits correspondants.

Genome Polyprotein Protéines par Source

Ici, vous trouverez Genome Polyprotein Protéines protéines organisées par plusieurs sources clés. En cliquant sur un lien, vous pouvez accéder aux produits. Pour des sources supplémentaires, veuillez utiliser notre fonction de recherche.

Genome Polyprotein Protéines par Type Proteine

Ici, vous pouvez trouver Genome Polyprotein Protéines protéines classées par types de protéines disponibles. Des types supplémentaires de protéines peuvent être localisés en utilisant notre fonction de recherche.

Genome Polyprotein Protéines par Application

Trouver Genome Polyprotein Protéines validé pour une application spécifique telle que ELISA. Certaines des applications disponibles sont énumérées ci-dessous. Cliquez sur un lien pour accéder aux produits correspondants

Genome Polyprotein Protéines fréquemment utilisés

N° du produit
Fiche technique
Reactivity Coxsackie A Virus
Source Yeast
N° du produit ABIN1660868
Quantité 1 mg
Fiche technique Fiche technique
Reactivity Coxsackie B Virus
Source Yeast
N° du produit ABIN1667326
Quantité 1 mg
Fiche technique Fiche technique

Dernières publications pour nos Genome Polyprotein Protéines

Lee, Monroe, Rueckert: "Role of maturation cleavage in infectivity of picornaviruses: activation of an infectosome." dans: Journal of virology, Vol. 67, Issue 4, pp. 2110-22, (1993) (PubMed).

Callahan, Mizutani, Colonno: "Molecular cloning and complete sequence determination of RNA genome of human rhinovirus type 14." dans: Proceedings of the National Academy of Sciences of the United States of America, Vol. 82, Issue 3, pp. 732-6, (1985) (PubMed).

Stanway, Hughes, Mountford, Minor, Almond: "The complete nucleotide sequence of a common cold virus: human rhinovirus 14." dans: Nucleic acids research, Vol. 12, Issue 20, pp. 7859-75, (1984) (PubMed).

Pseudonymes pour Genome Polyprotein Protéines

JEV polyprotein (flavivirus polyprotein gene) Protéines
polyprotein precursor (YFVgp1) Protéines
Genome polyprotein (flavivirus polyprotein gene) Protéines
Vous êtes ici:
Support technique